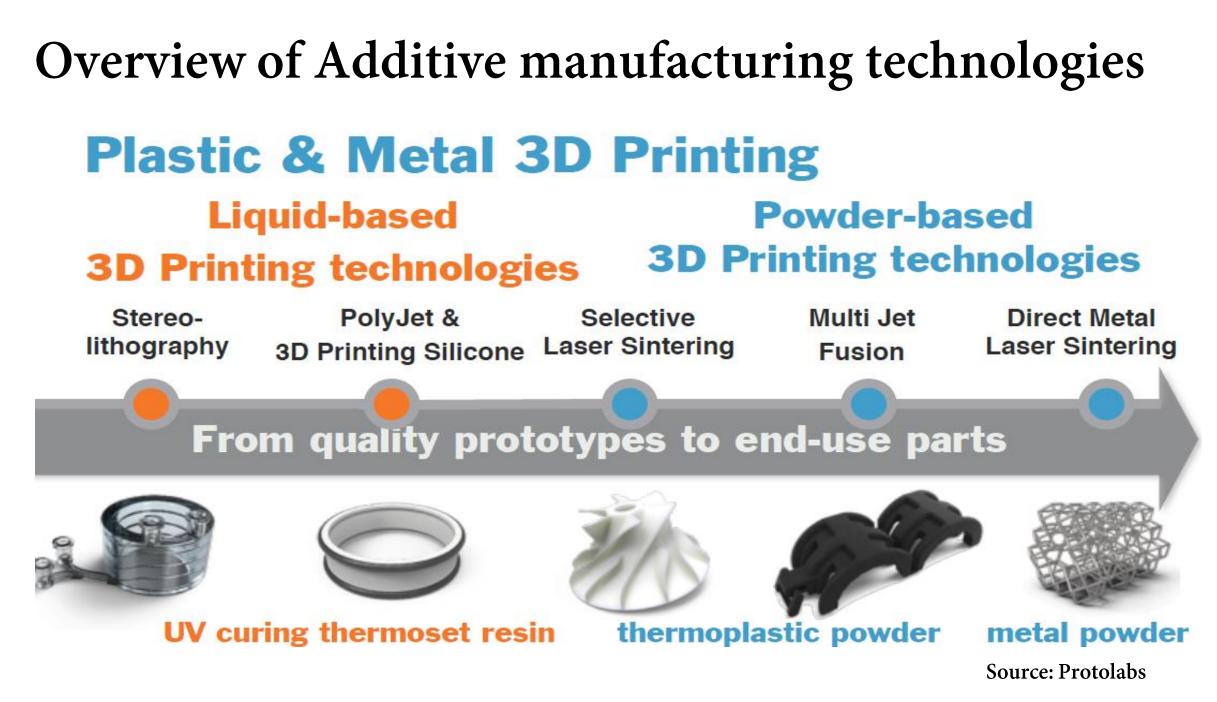
Selecting suitable spare parts for additive manufacturing


ATANU CHAUDHURI ASSOCIATE PROFESSOR- AALBORG UNIVERSITY, DENMARK DIGITAL SUPPLY CHAIN WORKING GROUP LEADER- MOBILITY GOES ADDITIVE

7th Annual Spare Parts Business Platform 2019, Stockholm

Agenda

- Introduction to additive manufacturing
- Why additive manufacturing for spare parts ?
- Have real industrial parts been printed?
- Part selection- the big challenge in adopting additive manufacturing
- Two case studies
- Criteria for screning and assessment
- Pre-assessment workshop
- Criteria thresholds
- Logic Decision Diagrams and Fuzzy Inference Systems
- Results and next steps
- An alternate approach
- Which approach to use in what context
- Key take aways

Why additive manufacturing for spare parts?

Long lead times for spare parts manufacturing Locked up in lasttime buy purchases

High inventory

of spare parts

Suppliers no

longer want to

deliver

Lifetime service contracts

Volume of some

spare parts are too

low

No CAD files

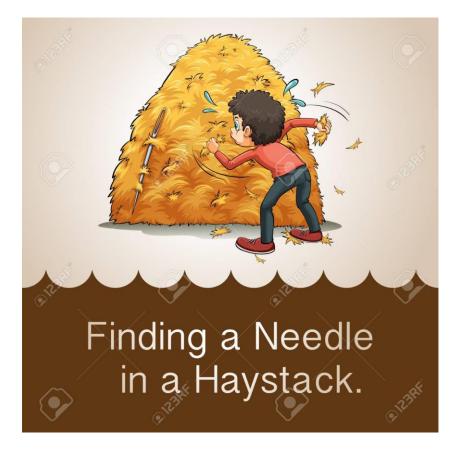
exist for the spare

parts

4

Have real industrial parts been printed?

Big Savings with partial substitution


And and the state

Prevention of downtime

6 11 15 1

Part selection- the big challenge in adopting additive manufacturing

- You have a large portfolio of spare parts (> 50,000)
- How do you figure out which of these spare parts can be manufactured using AM?
- What are your objectives?
- Which factors to consider?
- Which method to follow to process the data?

TWO CASE STUDIES

Criteria for assessing spare parts

Technical

- 1. Size
- 2. Materials
- 3. Surface finish requirements
- 4. Tolerance requirements
- 5. UV resistance
- 6. Chemical resistance
- 7. Corrosion resistance

Supply chain

1. Lead time

- 2. Demand and demand uncertainty
- 3. Unit cost
- 4. Supply risk
- 5. Inventory
- 6. Criticality
- 7. Repairability

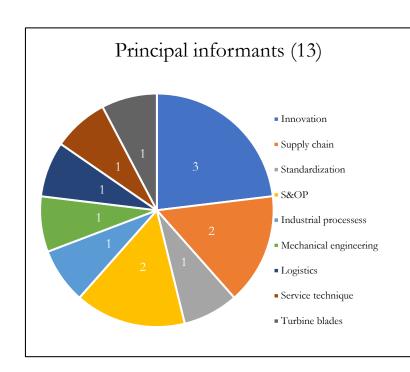
Six Step Spare Part Selection Method

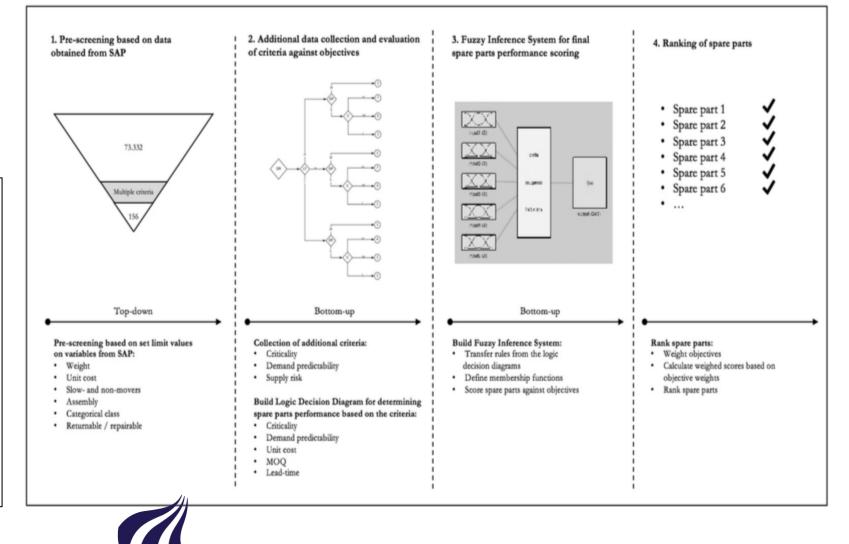
Step 1 - Information Sharing

Step 2 - Define Objectives

Step 3 - Technological Attributes

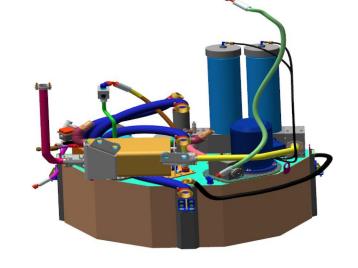
Step 4 - Strategic Attributes

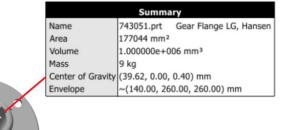

Step 5 - Selection of Spare Parts

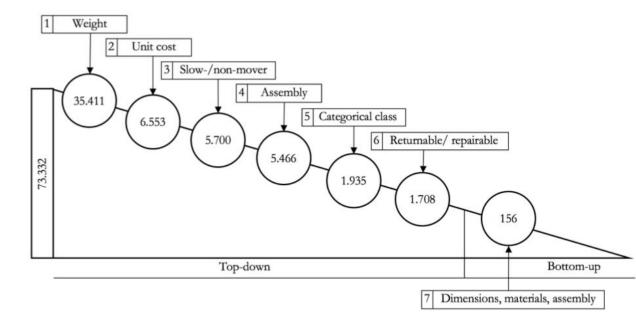

Methodology

Objectives

- Inventory cost reduction
- Downtime reduction




Criteria for screening and screening process



Criteria for screening

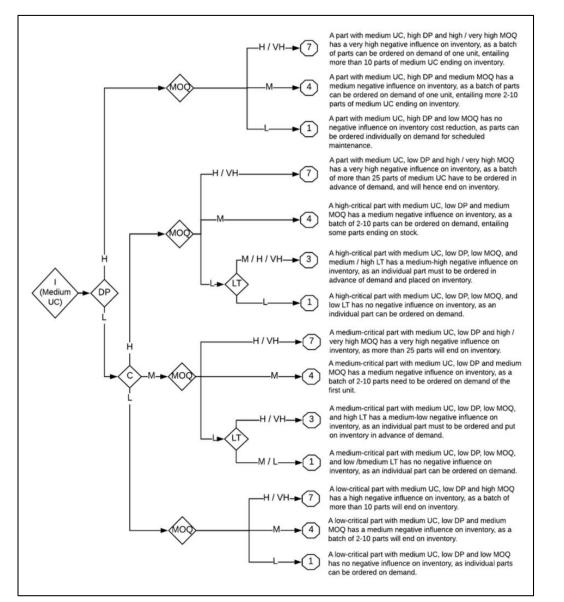
- ✓ Weight
- ✓ Unit cost
- ✓ Demand volume / rate (Slow, non-mover)
- \checkmark Part of assembly or not
- ✓ Categorical class
- ✓ Returnable-repairable
- Durability
- □ Lifecycle stage
- ✓ Repairability
- ✓ Technical spec. availability
- Obsolescence
- ✓ Size (to fit the build envelope)
- ✓ Material type

Preparing for assessment- workshop

- Preparation for workshop
 - Criteria for assessment
 - Data analysis
 - Clustering

Criteria for assessment		
\checkmark	Lead-time	
\checkmark	Unit cost	
\checkmark	Criticality	
\checkmark	Demand predictability	
\checkmark	Supply risk	
\checkmark	Minimum order quantity	
\checkmark	Material	

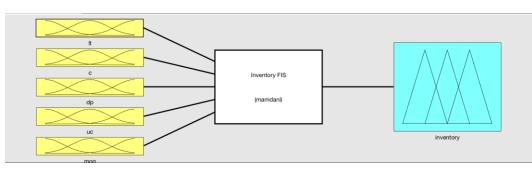
Order	SAS ID	Cluster	Material
1	30	1.1	29050648
2	119	2	VT730098
3	21	3	29005348
4	109	4	788507
5	83	5	764849
6	3	6	10204229
7	55	1.2	702670
8	DEF		
9	40	3	60065484
10	18	4	112095

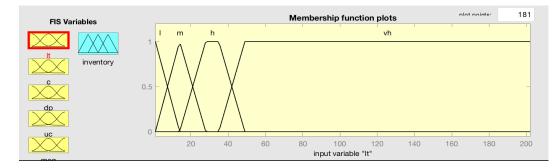


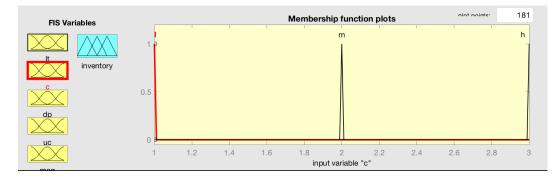
Criteria thresholds

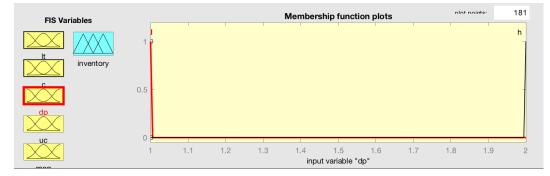
	Criteria value classes				
Criteria	Low	Medium	High	Very high	
LT (in days)	$LT \le 7$	$7 < LT \le 21$	$21 < LT \le 42$	LT > 42	
UC (in €)	$500 \le UC \le 1.000$	$1.000 < UC \le 2.000$	$2.000 < UC \le 4.000$	UC > 4.000	
С	Part failure has no influ- ence on breakdown	Part failure leads to breakdown after 21 days	Part failure causes immedi- ate breakdown	-	
DP	Corrective maintenance	-	Preventive maintenance	-	
SR	No. of suppliers $\geq 3 \land$ no LT variation	No. of suppliers = 2 \lor LT variation	No. of suppliers = $1 \land LT$ variation	-	
MOQ	MOQ = 1	$2 \le MOQ \le 10$	$10 < MOQ \le 25$	MOQ > 25	

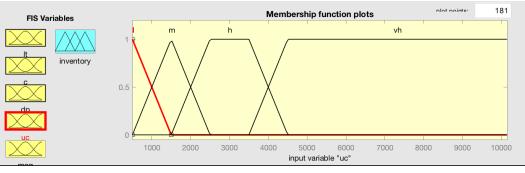
Logic decision diagrams

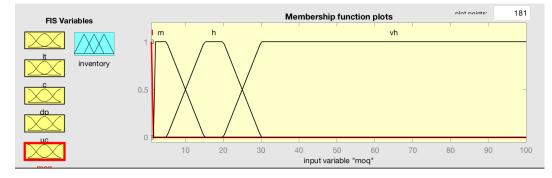




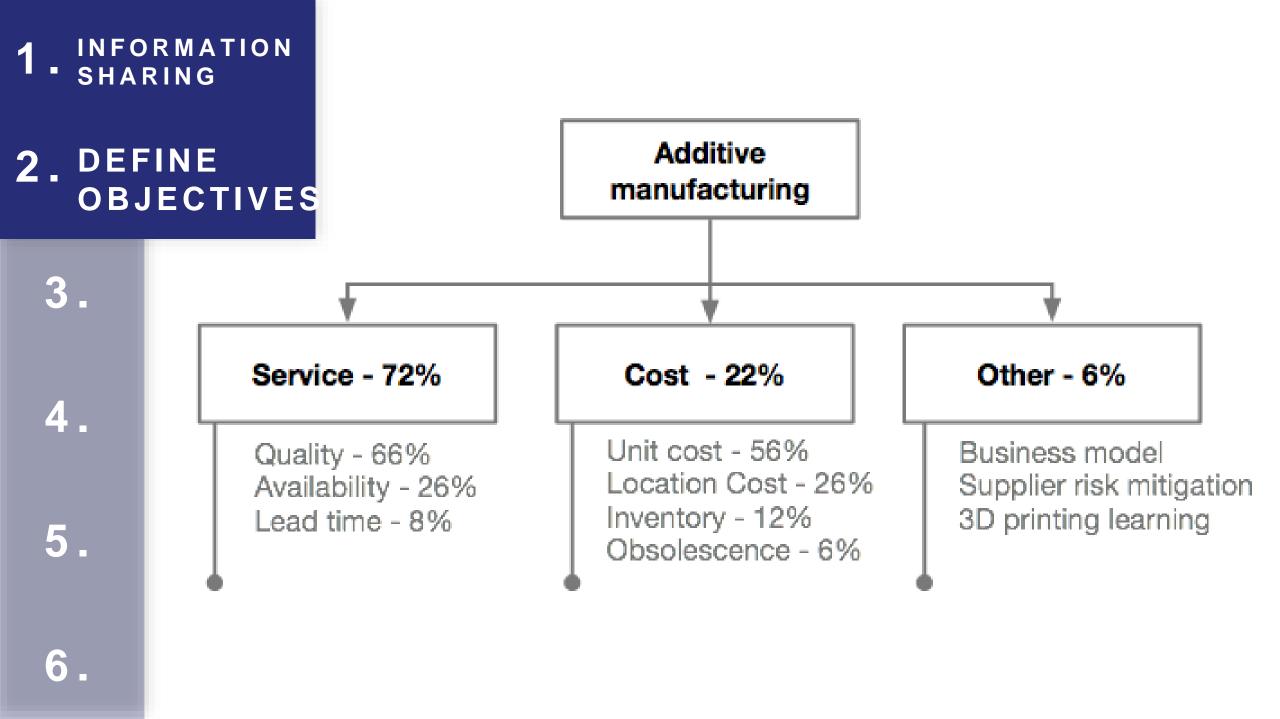

	Criteria value classes					Performance sco	
Material	С	DP	LT	UC	MOQ	D	I
29050648	High	Low	Very high	Low	Medium	7	3
29005348	High	High	Very high	Medium	Medium	1	4
788507	High	Low	Very high	Very high	Low	7	4
10204229	High	Low	Medium	Low	Very high	7	7
702670	High	Low	Very high	Low	Low	7	1
112095	High	Low	Very high	Very high	Medium	7	6
29031017	High	Low	Very high	Low	Medium	7	3
773042	High	Low	Very high	High	Low	7	3
61325	High	Low	Very high	Low	Low	7	1
61326	High	Low	Very high	Low	Medium	7	3
763147	High	Low	Very high	Low	Low	7	1
29052797	High	Low	Very high	Low	Medium	7	3
60099884	High	Low	Very high	Low	Low	7	1
753432	High	Low	Very high	Low	Low	7	1
60046071	High	High	Very high	Low	Low	1	1
29052798	High	Low	Very high	Low	Medium	7	3
779210	High	Low	Low	Low	Low	4	1

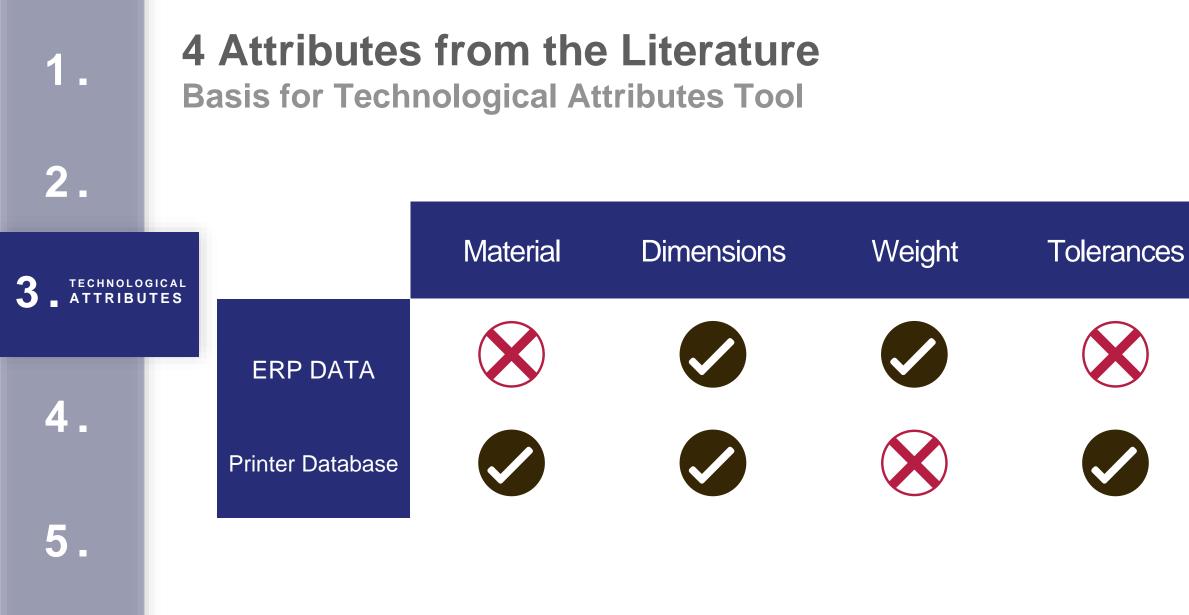


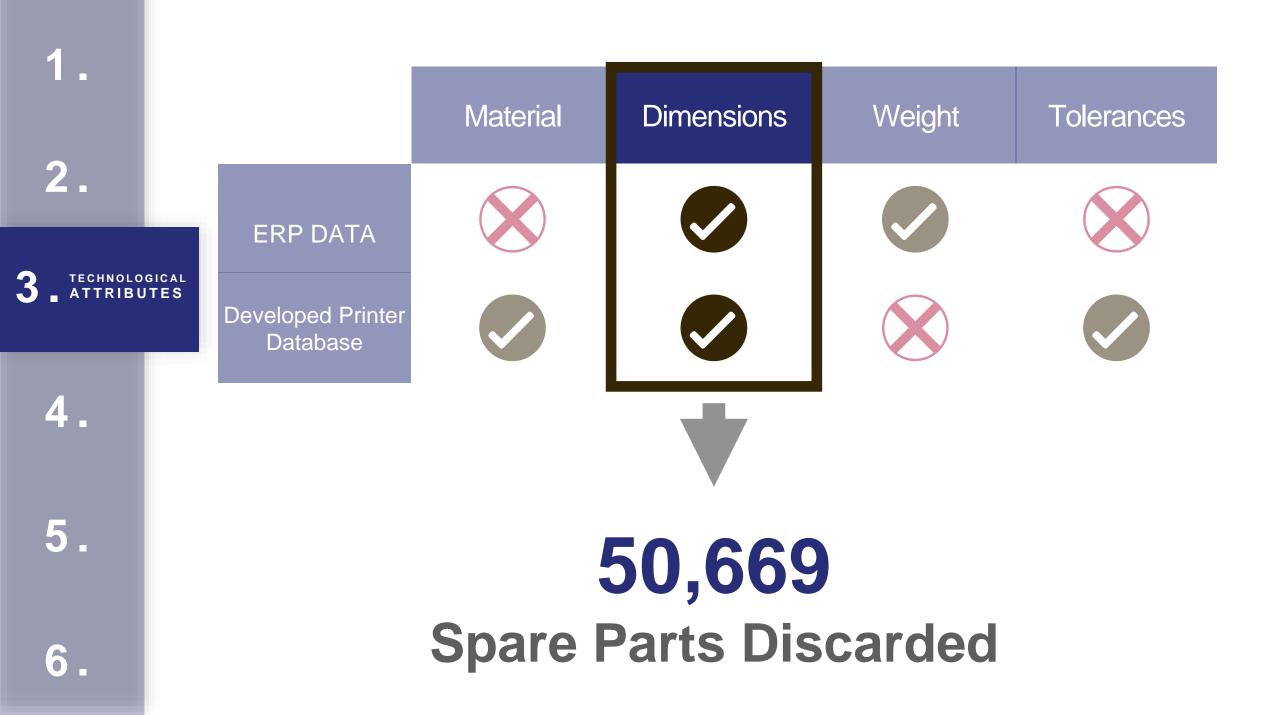

Fuzzy Inference System- Inventory



Results based on logic diagrams and FIS


			XV7 ! 1 .	3y con-		Inven-	
Rank	Material	Description	Weight (kg)	sump- tion	Stock	tory value (€)	Make/buy
1	10204229	STUD M30 X 430 10.9 FLZNLNC	2.14	0	5	2,598.5	Buy
2	112095	PITCH BLOCK STD/LT	61	0	0	0	Buy
3	29031017	PINION Z11 M20	88.8	0	0	0	Buy
4	788507	VALVE BLOCK FOR 3MW PU	150	1	1	4,643.53	Buy
5	29052797	FLANGE DE LS	40.8	0	0	0	Buy
6	29052798	FLANGE NDE LS	41.7	0	0	0	Buy
7	61326	ENDSH NDE DA560 EN-GJS 400	120	0	10	9,031.3	N/A
8	29050648	FILTER BLOCK	27	0	0	0	Buy
9	773042	FRON.LEFT/REAR RIGHT CLAW BEAM	95	0	0	0	Buy
10	60099884	PINION FOR YAW-GEAR, NM72/2000	21.4	0	0	0	N/A
11	61325	ENDSH DE DA560 EN-GJS 400	105	0	1	678	N/A
12	702670	PLATE FOR CRANK ARM	37	4	7	4,513.39	Buy
13	763147	REINF. V66 TORQUE ARM, MACH. L	99.5	0	0	0	N/A
14	753432	HOUSE F.ROTATING CONTACT	17,6	0	0	0	Buy
15	779210	FLANGE FOR CYLINDER	22.5	3	1	528.9	N/A
16	29005348	PAWL FOR BLADE LOCK	0.993	0	0	0	Buy
17	60046071	BRAKE DISC Ø870	98.5	0	0	0	Buy




Practical implications and future actions

- A step in the right direction
- Identify those parts that are tricky to manage
- Validation of methodology
- AM experts for bottom-up assessment and selection of AM technology
- Business case development as next step

An Alternate Approach

Screening

Weighting of the Strategic Attributes

4. STRATEGIC ATTRIBUTES

• Selecting the most Appropriate Method for Ranking the Spare Parts

5.

1.

2.

3.

2.		Time to Stock-out	Overhead Cost	Obsolete	Standard Cost
	Problem	Having enough inventory of a spare part for more than 10 years service	Mismanagement of data: Materials of no standard cost, but high overhead cost	Spare parts are not in production and not being sold by Nilfisk	Spare parts with a standard cost is typically non-printable material
3.	Action	Removing spare parts if: inventory / demand > 10	Removing spare parts with a overhead of more than 100% of the standard cost	Remove all spare parts classified as 'Obsolete'	Removing the spare parts which have a standard cost of more than 1000 DKK
	Spare Parts Removed	271	4,101	1,464	528
STRATEGIC ATTRIBUTES					
5.			6,364		
6.		Spare P	Parts Dis	scarded	

Screening

Selecting the most Appropriate Method for Ranking the Spare Parts TOPSIS

1.

2.

3.

5.

6.

Δ

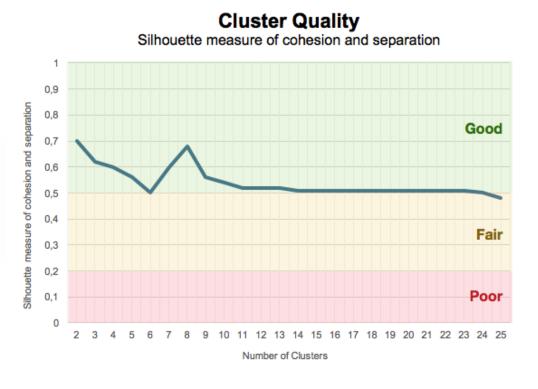
STRATEGIC

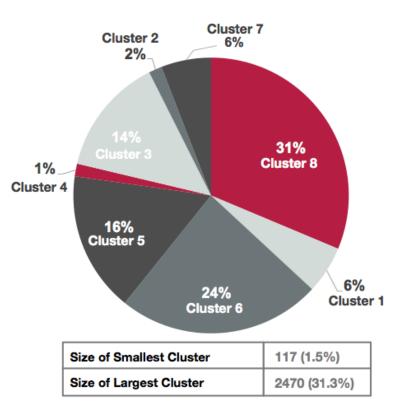
TRIBUTES

Material	Overhead Cost (DKK)	Lead Time (days)	Demand (12 months)	TOPSIS Score (Ci)	TOPSIS Ranking
56305665	364.74	85	1	0,972597613037653	1
53391A	311.50	99	1	0,971931770047372	2
56418987	321.29	68	6	0,96504184805561	3
56305436	428.82	50	1	0,964589392115614	4
8-51-05016	299.01	71	2	0,96433531665227	5
56304603	512,35	1	1	0,949103145137554	100

How can we obtain more valid rankings using MCDM? How is the data actually positioned according to the 3 criterion?

Selecting the most Appropriate Method for Ranking the Spare Parts Two Step Cluster Analysis


3.


1.

2.

4. STRATEGIC ATTRIBUTES

5.

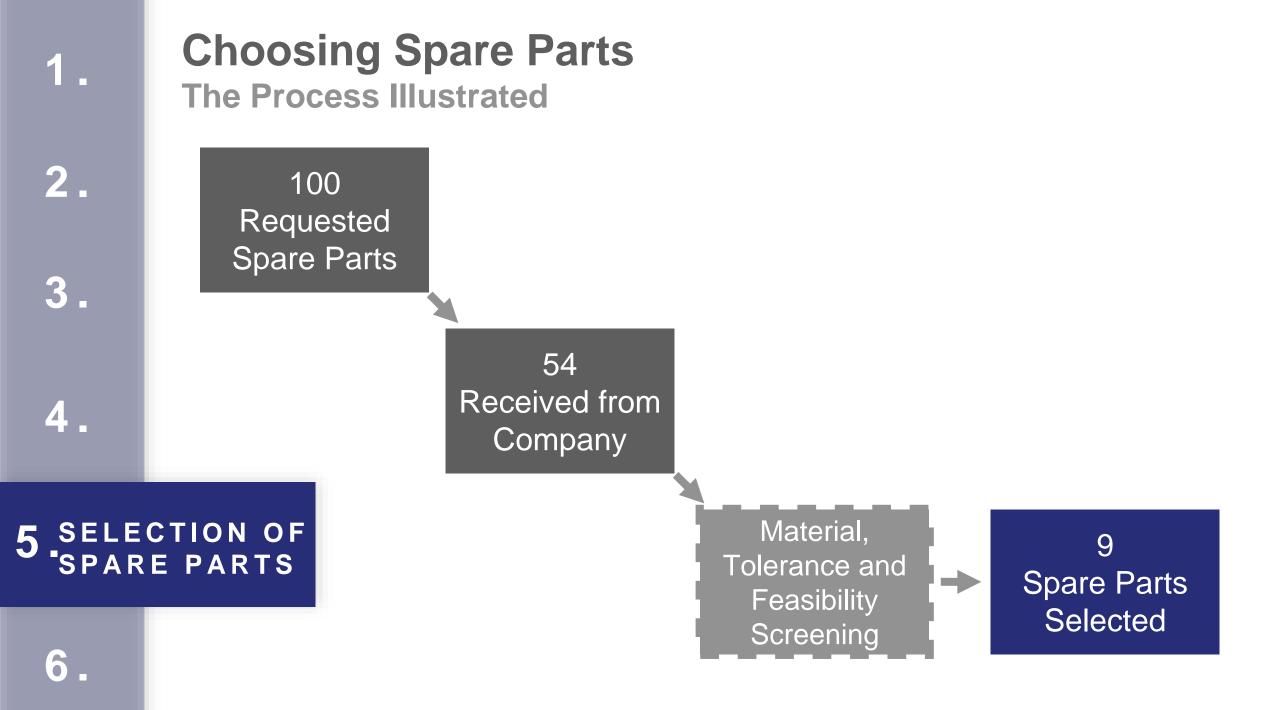
Ranking within Clusters using MCDM

2	

2.

1.

4. STRATEGIC ATTRIBUTES


5.

6.

Oluster No.	Innet	TOPSIS Ideal (+/-)				
Cluster No.	Input	Positive Ideal (+)	Negative Ideal (-)			
	LT	999.11 days	129.75 days			
1	D	6 units	982 units			
	0	519.63 DKK	140.68 DKK			
	LT	907.29 days	0.07 days			
2	D	11 units	980 units			
	0	428.82 DKK	0.00 DKK			
	LT	25.00 days	1.00 day			
3	D	1 unit	6,250 units			
	0	141.65 DKK	30.59 DKK			
	LT	36.83 days	1.76 days			
4	D	12,142 units	28,6365 units			
	0	48.81 DKK	0.00 DKK			
	LT	41.00 days	25.50 days			
5	D	1 unit	11,901 units			
	0	89.11 DKK	0.00 DKK			
	LT	25.60 days	12.00 days			
6	D	1 units	12,092 units			
	0	71.22 DKK	0.00 DKK			
	LT	78.00 days	42.00 days			
7	D	1 units	17,318 units			
	0	79.76 DKK	0.00 DKK			
	LT	12.86 days	1.00 day			
8	D	1 unit	11,992 units			
	0	39.13 DKK	0.00 DKK			

List of the most appropriate spare parts within each cluster

LT: Lead time D: Demand O: Overhead Cost

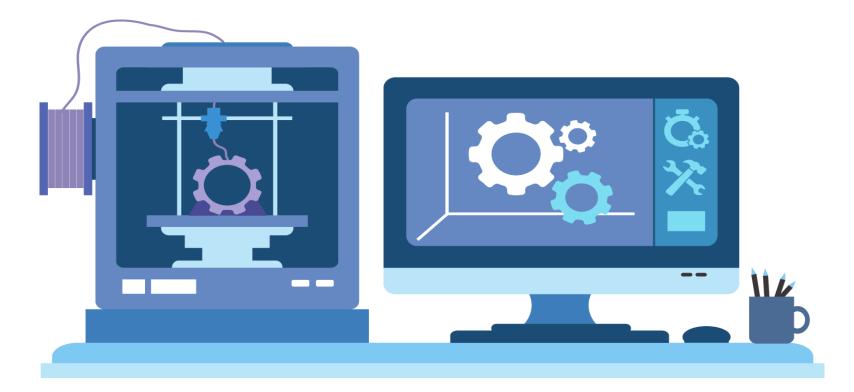
Which approach to use in what context

- 1. Multi-criteria decision making approach (MCDM) –scoring parts on factors and linking factors to be objectives (suitable for less number of factors and less number of parts)
- 2. Logic decison diagrams, cluster analysis and fuzzy inference system (large number of parts, medium number of factors but strong interrelationships of factors and objectives)
- **3.** Cluster analysis and MCDM approach for ranking of part clusters and within cluster ranking of parts (large number of parts, limited to medium number of factors and independence of factors)
- 4. Bottom-up expert driven selection using a questionnaire or selection protocol (no data available or not possible to do quantitative analysis)

Key take aways

- No "one-size fit –all" approach
- Each company must choose the most appropriate approach based on multiple factors
 - Application area- spare parts, parts for new products,
 - whether redesign for AM is considered or not
 - Data availability etc
- Need to update the printer database to identify limits of AM technologies
- A group of cross-functional experts from the company should be involved through the entire process
- If there is no data- use bottom-up approach
- Use machine learning based feature recognition to automate part-identification process

Commercial software to help you in part selection for additive manufacturing



Questions

and Answers

atanu@business.aau.dk

https://www.linkedin.com/in/atanuchaudhuri1/